HIV evades RNA interference directed at TAR by an indirect compensatory mechanism.

نویسندگان

  • Joshua N Leonard
  • Priya S Shah
  • John C Burnett
  • David V Schaffer
چکیده

HIV can rapidly evolve when placed under selective pressure, including immune surveillance or the administration of antiretroviral drugs. Typically, a variant protein allows HIV to directly evade the selective pressure. Similarly, HIV has escaped suppression by RNA interference (RNAi) directed against viral RNAs by acquiring mutations at the target region that circumvent RNAi-mediated inhibition while conserving necessary viral functions. However, when we directed RNAi against the viral TAR hairpin, which plays an indispensable role in viral transcription, resistant strains were recovered, but none carried a mutation at the target site. Instead, we isolated several strains carrying promoter mutations that indirectly compensated for the RNAi by upregulating viral transcription. Combining RNAi with the application of an antiviral drug blocked replication of such mutants. Evolutionary tuning of viral transcriptional regulation may serve as a general evasion mechanism that may be targeted to improve the efficacy of antiviral therapy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mutational analysis of the equine infectious anemia virus Tat-responsive element.

A hairpinlike structure is predicted to exist at the 5' end of equine infectious anemia virus (EIAV) RNA which is similar in many ways to the human immunodeficiency type 1 (HIV-1) Tat-responsive element (TAR). In EIAV, this structure has a shorter stem than in HIV-1 and lacks the uridine bulge. Primer extension analysis of EIAV RNA was used to identify the transcriptional start site in the vira...

متن کامل

The apical loop of the HIV-1 TAR RNA hairpin is stabilized by a cross-loop base pair.

The TAR hairpin of the HIV-1 RNA genome is indispensable for trans-activation of the viral promoter and virus replication. The TAR structure has been studied extensively, but most attention has been directed at the three-nucleotide bulge that constitutes the binding site of the viral Tat protein. In contrast, the conformational properties of the apical loop have remained elusive. We performed b...

متن کامل

HIV develops indirect cross-resistance to combinatorial RNAi targeting two distinct and spatially distant sites.

Resistance to existing HIV therapies is an increasing problem, and alternative treatments are urgently needed. RNA interference (RNAi), an innate mechanism for sequence-specific gene silencing, can be harnessed therapeutically to treat viral infections, yet viral resistance can still emerge. Here, we demonstrate that HIV can develop indirect resistance to individual and combinatorial RNAi-targe...

متن کامل

An RNA-binding peptide from bovine immunodeficiency virus Tat protein recognizes an unusual RNA structure.

The human immunodeficiency virus (HIV) Tat protein binds specifically to an RNA hairpin, TAR, located at the 5' end of its mRNA. Tat uses a single arginine residue within a short region of basic amino acids to recognize a bulge region in TAR. Here we show that a 17 amino acid arginine-rich peptide from the bovine immunodeficiency virus (BIV) Tat protein also binds to an RNA hairpin at the 5' en...

متن کامل

Bcr-abl Silencing by Specific Small-Interference RNA Expression Vector as a Potential Treatment for Chronic Myeloid Leukemia

Background: RNA interference (RNAi) is the mechanism of gene silencing-mediated messenger RNA degradation by small interference RNA (siRNA), which becomes a powerful tool for in vivo research, especially in the areas of cancer. In this research, the potential use of an expression vector as a specific siRNA producing tool for silencing of Bcr-abl in K562 cell line has been investigated. Methods:...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell host & microbe

دوره 4 5  شماره 

صفحات  -

تاریخ انتشار 2008